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NUMERICAL RESULTS FOR LOW FREQUENCY SCATTERING
BY ELLIPTIC CYLINDERS AND BY ISOLATED
SEMI-ELLIPTIC PROTUBERANCES

Lo o A Nkt TN

by

J. E. Burke, E.J. Christensen, and S, B, Lyttle o

ABSTRACT

The low frequency approximations (''closed form' and series)
derived previously for the fields scattered by elliptic cylinders, and
by semi-elliptic protuberances, are applied numerically. For the two
cases, £ or 4 parallel to the generators, the results presented in-
clude total scattering cross sections, forward and back scattered inten-
sity and phase curves, and far-field scattering patterns; for various
angles of incidence, various eccentricities, and for various values of
ka < 1.1 (where é:,zn/.a and 24 is the major axis of the scatterers).
Attention 1is restricted to the low frequency range not covered by pub-
lished tables of Mathieu functions.

1. INTRODUCTION

The problem of scattering by a perfectly conducting elliptic cylin~
der is separable in elliptic coordinates and the solution can be represented

L2 3. How-

as an infinite series of periodic and radial Mathieu functions
ever, since Sieger'sl original derivation of this solution in 1908, the only
detailed calculations based on it appear to be those of Morse and Rubenstein4
for the strip (the elliptic cylinder with eccentricity equal to 1). In this re-
port the exact series are used to obtain numerical values for the scattering

amplitudes for a family of elliptic cylinders (ranging from strips to circles),

and for the corresponding semi-elliptic protuberances on ground planes.

For limited values of Ra 210,where =21/ and 24 is the major
axis of the cylinder, tables and graphss’ 6 of the Mathieu functions can be
used to evaluate the exact series for the scattering amplitudes. In the pre-
sent report we consider the essentially complementary range 42 < 1./ and

evaluate the series in 'closed form''. The closed forms are obtained by



initially truncating the exact series and then using values for the Mathieu
functions obiained from known low frequency a.pproxima.tions7. The valid-
ity of these forms is investigated by comparing them numerically with
"exact' results based on tabulated functions. In addition to considering
closed forms, we demonstrate the utility of elementary series approxima-
tions7 (in powers of £ ) for the scattering coefficients and for the scatter-

ing amplitudes.

Although we work with relatively simple analytical expressions,
their numerical application is complicated by the fact that four variables
are involved; fd) the eccentricity, the angle of incidence, and the angle
of observation. To make the computations tractable they were performed
on a Burroughs 220 electronic computer. The extensive numerical results
thus obtained are preserved in permanent tables and in punched cards;
the latter provide data in a usable form for electronic computing programs

b

on related multiple scattering problems It is not possible to present .
the complete set of tables here and we merelyillustrate their contents
through a series of graphs. For cylinders, and for protuberances, these
graphs include forward and back scattered intensity and phase curves,
total scattering cross sections, and far-field scattering patterns; for var-
ious angles of incidence, various eccentricities, and for various values of

ka < 1.1.A variety of results are given 8o as to demonstrate the overall de-

pendence of the amplitudes on the four variables.

In the following, we begin with a brief review of the scattering
problem and the derivation of the series solution by separating variables
in elliptic coordinates. Then approximations for the Mathieu functions
are introduced, and the accuracy of the resulting expressions (closed form
and series) for the amplitudes is discussed. In the final section the tables
that have been compiled are described and graphs of results taken from

them are given.



2, REVIEW OF SCATTERING BY AN ELLIPTIC CYLINDER

In two dimensions the scattering of a plane wave by a cylinder par- L
allel to the 3. axis is specified in the region external to the scatterer by

a solution of

(1) (Vi RDPIES =0, VE=3i+a,, k=2n/,

s

satisfying prescribed conditions at the surface of the cylinder. The solu-

tion has the form

(2) W) = Bir) + ulp),
where
(3) f{ﬁ) = Bt‘k"d%(’-ﬂ—%}

represents the incident plane wave, and where the associated scattered

wave fulfills

(4) ur) ~ rﬁ/((}z/@r)de(cffc/o’)) r-soo

The '"scattering amplitude" f(sp)fyg) indicates the "far-field" response

in the direction 4’ to plane wave excitation of direction f

For the elliptic cylinder the boundary conditions are applied on

the surface 2

LS SR
(5) T E L sy,
where 22 and 26 are the major and minor axes respectively; see Fig. 1.
In particular, for an incident electromagnetic field specified by either
A
E = #;Z./Z, = 3‘;5_ or by {'/o’-: 3‘:} (the two principal polarizations), the
3~ component of the corresponding total field on the surface of a perfect

conductor satisfies either

(6) Y=0, i 50‘-__ tg’
or
- 3¥=0, ¥ H=¥% .

V3



Fig. 1

Geometry for the scattering of a plane wave by an elliptic cylinder,

R

(x,y)

P» X

Fig. 2.

o]

Elliptic coordinates.
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To solve the problem posed for the elliptic cylinder, one introduces

elliptic coordinates (g,g) defined by

(8) x+,}= /*g"‘p= %aoé/l({-/-"e)}
as illustrated in Fig. 2, the coordinate curves & = constant and & = con-

stant are ellipses and hyperbolas respectively, and each curve has foci on

the X axis at #+¢/2. Then Eq. (1) becomes

3 3 2 2 P 2 £%2 e, 5,2 .
(9) gg‘fa—e‘,z*ﬁ(m/z;—oosé)}‘”({e)=0, A= B = RaF), ;
and the cylinder (5) is specified by the complete coordinate surface &=g
where
é a

By separating variables, the solution of the boundary value problem can
be written as a series of particular integrals of (9) of the form i(@)/?n(;)‘,
thus

(11) ¥ire =5 0, 5,@0R,8),

where the constants &, are determined by applying the boundary conditions
at &£=74.

In (11) the Sn are the periodic Mathieu functions (even or odd, of
period & or 2/ ) and the Rn are the radial Mathieu functions of the first
and second kind (analogous to Beszel functions of the first and second kind).

2,10,11
» 10,1 and in the

These functions are discussed in detail in the literature
following we only state those forms and properties needed to make (11)

explicit.

For a given value of A, the periodic Mathieu functions, which we

denote by Seﬂ(é) (instead of by S‘»gn(fz,ac;ée) as in reference 11), form a
(=]

complete set of orthogonal functions:

VA an
(12) S 8, B8 @d6=0, S 8 @S @)de = ;5 ™ £O
o m n

2nM. =
° /V./jmmn)

\j:e)o,



where the present M’s equal those of reference 11 divided by 2. Their
Fourier expansions are of the form

(13) § @ =3 B haosns,  §,8 =S AT (Ksinne,

nzo

»*
where 2 means that 7 and »n have the same parity and where the val-
ues of the coefficients depend on the normalization of the SJ (5)} as in refer-
nm

ence 11 we use

5¢m(9) > 0emE, 8,60~ —'6-@7;,{29' , for h>0,

(14) -, .
8, (O =§,05',7(ﬁ) -1, @T&®|,_, AR =1

The present functions are related to the ¢, and $., of references 2 and
10 through

S = ce2M,)

Ve
(15) ©n >

= 2
Som— se, (A’Mnn) )
The radial functions of the first kind J;m(g‘)) may be written as
o

series of Bessel functions:

L.08) =2 0" R BT, (heosh £,

(16) ;
3,080 = ranks 30" EAT (1T, Cheost §).

The functions of the second kind, Ngm) follow from: (16) by replacing the
Bessel functions by the corresponding Neumann functions. However, for
small values of /L, the expansions involving products of Bessel and Neumann
functions are more convenient:

= g é het) g (hEF
(17) Mo (9 = s 2, BTN, ()7, (A5,

Cem

For large values of 5’) the J@.m and /\ém behave asymptotically like
=4

=]

their Bessel function counterparts, i.e., qf‘m(g)~jm(ép)) /\/gm(éﬂ),\, N, (fr),

In particular, the linear combinations

(18) /'{;,m(é‘) =\Jém./§)+é/\/gm(é‘))

PR

Y



are analogous to the Hankel functions and correspond to outgoing cylindri-

cal waves as {—poo:

(19) (0~ e finheaent) €*4E w2 flinkr) &%, £ .

In order to express the formal representation (11) for ¥ in terms

of the above functions, it is convenient to consider the wave functions ¥
X,

o0
and « separately. Thus, employing the contracted notation 2F=ZF +2F
UR IR e n GToon

. 1 .
the usual expansion of the plane wave may be written as

20 = eHRreascrg) U S 15, (015, (6)T. (£)M
(20) Yo =e Zn CICISRCNRCP A
Similarly, for both polarizations, the representation of 4 in terms of

outgoing radial functions is of the form
= . (M
(21) u5) = 2,72, 5, (409, OH M,

The scattering coefficients d/;l ,determined by applying the boundary con-

dition (6) or (7) are given by

__ %) _ -
and
T8 Y
"= —_‘LZ}_.~ = * - _ AN
(23) a, f-{{;(é;) "a;,;q; ‘-?;-n 3“?‘- g,eéa. (forﬁ—d‘%/,

The Mathieu function series representation for the scattering amp-
litude follows by letting & or Ar become infinite in « of (21). Thus,

using the asymptotic form of Hgm of (19), we obtain

(24) u ~e"ﬁ°°‘ﬁ;»,}£/(m/zaamg ) t(@‘/f.,)~8"ér/}£/(¢'ﬂ'kr3(7&(¢j$€>

where

3 E S . -1
(25) BB =) =2 D OGN

The amplitudes for the elliptic cylinders can be used to obtain the
analogous ones for semi-elliptic protuberances on ground planes; see Fig. 3.
These follow by taking twice the symmetric or anti-symmetric components

of the cylinder results with respect to reflection of one angle in the plane of

one axis; a procedure equivalent to that used originally by Rayleigh12 to

JPE 30 SRR PN & I NI

R P R



Fig. 3.

(a)

i

720}

(b)

Geometry for scattering by a semi-~elliptic protuberance on a
ground plane. Case (a) shows the major axis perpendicular to the
ground plane (6§ = 7/€ = b/a = p < 1) and case (b) shows the
minor axis perpendicular (§ = N/ = a/b = p™*21); 6 = 0
corresponds to perpendicular strips, § = 1 to semi-circles,
and § = oo to flat strips.




treat the semi-circular protuberance. Thus, if the minor axis is in the
ground plane X =0 (see Fig. 3a), if T-LO<¥L< g) is the direction

of incidence, and if 4 is parallel to the generators, we obtain

(26) KM = g8+ £047-9),

Similarly for £ parallel
(27) FER-B) = g (£~ (ET~%).

The corresponding results for the major axis in the ground plane (see Fig. 3b)

follow from (26) and (27) by replacing ij_(u)/u) byf_t (;,_75+7)> ’Er-v‘-,u) , or,
equivalently, by interchanging 4 and 6.

The real part of the scattering amplitude for the special value ¢ =¥

is proportional to the total scattering cross section £Q.Thus, for cylinders

- £ - 27y )l
(28) Ce™ gRepuB,) = 3% ) Igmllldr,
and for protuberances
4 B 2 (7% (2
(29) Q= Rt 2R = ) Ihgalar.

/2

For limited values of ka2 >1 numerical values for the scattering
amplitudes (25) to (27) can be obtained by using tables and graphss’ 6 of
the Mathieu functions. If Kz is large enough,one can use asymptotic

1

1
methods to obtain high frequency approximations On the other hand,

for R< 1.0 the required values of the Mathieu functions are not readily
available. They could be calculated by employing tablesls' 16 of the Fourier @
coefficients A:L, B:L. However, these are given for values of /L=(/€a,)(1-(02)1/3

and consequently 4z and the ratio P = b/a cannot be varied independently.

In addition, this coupling complicates the calculation of the radial functions;

O RN

in general, for the given 4 the values of the Bessel and Neumann functions

needed in (16), (17), etc., are not given in published tables.

In the following sections we restrict attention to computations in
the low frequency range not covered by published tables. The coupling

described above is avoided by using truncated series approximations for




Ex(1+p)
the Mathieu functions. Thus, in terms of ¢=b/’, X=(ka)/2,and L=fn —

(where £n ¥ =06772/6...is Euler's constant), for the radial functions we use

I =/-x21* e‘+L‘~" -6pe+7p*
L. ”"La (rep2+7pY) - Ao 25 1502~ /50* +-23p)

- S+p?
3, =t T s Kaoaet st - J (@ob)  I= Eretr (/-é?‘+p‘)1
(30) X2
I,= 3004 =T aob I = ——(/-x‘ ﬂ_) N i zm/eJ
3 “x > 9 2 2 e, ( )
m e % i (m 1) v.:a
4,= (m-2y, = £ Myl = :
Y vzsé )(’ 4 , Crgw Tomzn] » [m/2] -m/?m/,aaﬁ of m/ﬁ) :
and
[J‘ L+ x2p~ 5—(2+59 - 402+ 305+ 200 + X2 (1- Zo- 02+ %'4,93"?4'%(’5*‘?6)],
N, = mc/m[’* x 2 Grepre®-8(+p) + & -—'(5+5e+9 XD,
(31)

- %mmzw%e% 203+ ”)} = N, @b,

= 4 @ ¥
Af‘g Xzﬂ‘(l‘ff)z[l-’_ (11"4‘?""?)] 02, /Vg )63’2[1+e>3 N /\cém='7%("3zz) zé_"?) ()72-1)_/)

where 4 <>b indicates the interchange of £ and A.

Similarly, for the derivatives with respect to §. we use7

Je, =~ £4 P[— ——(/+9E)+ (? 100499 )_] xe[/ '”(”*P ) 4 /72(6”/4? *59)] I(aeb
(32) , 5

c xﬂe[ X (H—(’)J Jé e ———(5+e) J’j(geb) Jog= ,if__[ Pz_ %(’*'GP "'("’)j

/ m. /2] / Im/el

L= (m T 202G, (5 ) I- £ S 2v>cm,[+(m-£”")?'zj<

1

Ng £ {/ + ‘K;(l-f--pﬁ— #pL)+ g‘—; [-- 4254+ /ep(:+qﬂ))_]§)

£ . £ 2 s
(33) Ne, = Zncired {/+ %—[5+/op—5p’z+89(/+e)l_]— ’_‘55(,,?+/,?e+_es+?'4)
+ x—‘(ﬂaro + 14RO RO+ ")g = N’(aeb) ‘
%~ P ¢ e (’ [

’ = _..__8_.__, - X—E — ’ / , z m ” ,
Nl oot = N, M3 BN, K GRS

10



Many truncated series approximations for the periodic Mathieu

. . . 2,10,11 s
functions appear in the literature ' . For present purposes it is

convenient to use those given in reference 10:

6,M) l-i(zz.)imw(ﬁ feaed? 10 (Af{eoset U caseef,
e [
) fogt- =g ey,

Sgﬁ(ﬁMﬁﬁjﬁz m‘s‘w'(é) {cquw 15 (ﬁ> 384 of - LT 006247_;

(34) 258
M, h)Seass¥ a__fﬂ 1) 9% _ 5
(e ceose-(8] {2500 942 01 ()} (o0 & conserces 3
5, (i’M )” ﬁm‘f’-i(ﬁ)mé?’-f—(ﬁ) {émﬂ’ SR IP _ pin
[ IRE
(/z) g/sm’%'ﬁ SRS 3P _ o
L, 7.2 .27 >2%° 27 5,
§,2M, )e~ Sin2P- (B b"”""f’ G\t simed i 2P
< ( +() f S84 288 >
%
z s (AN S0nSP s ), i\ Sem7e & S f
50//‘7) pin ()Z( 8 §+(E)§@«/o 52’6 n 3P ¥
These give most directly the angular factors 5,2(4”)5'72(?3)/‘1,; which

appear in (25). Using Eqs. (30) to (34) the exact series for the amplitudes

can be evaluated in closed form.

Explicit series approximations for the scattering amplitudes have
‘been obt:a.inecl7 by inserting (30) to (34) into (25) and expanding in powers
of £ (treating L as a constant). The amplitudes correct to order %€
thus obtained are given in reference 7 and they will not be repeated here.
However, for future reference we note some leading approximations. Thus

for cylinders with ﬁ parallel the real and imaginary parts to order £*are
R g0t (88 o2y BT 20t
2 g, (¥4 )=-n (Ta') [@ + =3 (Q o Foas P+ sr Fon )|
fa S ¥
.deg )= —fr(—f) [9—(1{-())(600/5‘?00/b‘€+w4’,6m£)]+7T(%) Z(‘—fz(éﬂe‘z—sel.)
(1-p* —p?
(35) + E—EP—)-(caézwmzf)—m—%—lﬁ[ec@wmaﬁ +eosb,cos 34)
. . . ) 2
F P o 3L 1660 Lun 54{} - %ﬂ (7-2p+4pL)@rdecsy

2 2
4P S . .
- ¢ 4) (7p-2+ 4L )Rt S+ (L’; 2 Eeecoéchcaéfqg+(1+p‘2)/sma%mzsg]§
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-1
Similarly, letting D =m2(m244L%) , the amplitude for é parallel is speci-
fied to order £° by

Re 2.(49) =-D+ 2! %)2[“{ (1-D) +(1-g e 24 +cqaz¢ﬂ )
(36) *g’”f—'(‘&ﬁ) = 2_1’__5.9_ - (%‘i)a[ﬁ“{?%_—zﬂ + é;r—D(I'ee)(co,éz%l- as2f )
FI(1+p)(e08 Peos P +PoRFLENB)| .
3. ACCURACY OF THE APPROXIMATIONS

In this section we investigate the numerical validity of the closed
forms and series approximations for treating elliptic cylinders with arbit-
rary eccentricity and ka< 1.0. The scattering coefficients are considered
first (for fa <1.2 ) and then the scattering amplitudes (for fa<1.1). In
each case the range of K4 includes some values in common with the tables

of references 5 and 6.

Consider initially the closed form approximations \de‘,/;=(52)(55)[252)5'(55f1 ')1_
etc., for the coefficients 6%2 for =0 and I (the leading coefficients).
For the limiting cases of strips (p = 0) and circles (e =‘l)} the accuracy
of these formulas follows by comparing them numerically with "exact'" re-
sults; results obtained by using tabulated value518 for the Bessel functions,

»

and for the Fourier coefficien'cs1 , in the series representations for the
radial functions (e.g., in Eq. (16)). Thus, as illustrated in Table I, for

e =0 or I and ka =1.2,itis found that the closed forms for the leading
coefficients practically equal exact values. Similarly, for intermediate
values of e (i.e., ©<P<1 ), and ]_</@1<1.2Jthe closed forms agree with
calculations based on references 5 and 6. Such numerical comparisons in-
dicate that for ,@451.2) the closed forms for the scattering coefficients are

uniformly accurate for all ¢ and that the approximation for a: when p=1
L

is the least accurate.

Numerical results for d‘/;z with 2 2 2  show that for the range ka <1
of primary interest, and for the larger range Ra <17 , all but dJé and on a.JS
are negligible compared to the leading coefficients. These higher order
terms are most significant for the circle, while for the strip only \_Gmd\/‘-a

12



Im ae, Im a;l

p =1 p =0 p =0

a E C E C ka E C

1.0 0.114 0.114 -0, 409 ~0, 409 1. =0.273 -0,273
1.1 0,214 0.214 -——— - 1.1 - _———
1.2 0.305 0.305 -0. 350 -0.350 1. =0, 348 -0.349
Im at Im atl

p = 1 p = p =
ka E (o} ka E C E C
1.0 -0,428 -0.428 1.0 0.328 0.325 0.437 0. 437
1.1 -0.464 -0, 465 1.1 0.323 0.318 .- -
1.2 -0.488 -0.489 1.2 0,307 0.301 0.500 0.500

Table I. Comparison of ""exact'" (E) and closed form (C) values for the

imaginary parts of the leading non-zero scattering coefficients for

strips (p = 0) and for circles (p = 1); note that agn = ag, = 0
for p = 0 and a.';'.fn = a.:g for p = 1.0. The exact values are

based on tabulated functions and the closed forms on the formulas
Imay = (30)(31)[(30)®* +(31)*]"* and Im anfn = (32)(33)[(32)% +(33)3] "*.

13



needs to be retained. For the circle, the sum of the absolute errors in-
troduced by the closed forms for n>2 is less than 2 percent of the

corresponding component of a leading coefficient.

As shown in Fig. 4, for certain ranges of the parameters, the
closed forms for the coefficients may be replaced by truncated series.
In general, the smaller the value of ¢ the larger the range of ka for
which the series apply; this is illustrated in Fig. 4a by the series for the
imaginary part of a_;‘]‘_, In particular, the agreement of the different approx-
imations in Fig. 4a, when p~O , is typical of the results for the real and
imaginary parts of 4:; and 6?;,; yin general, the results for the other co-
efficients are not as good. The maximum range of £z for all p follows
by comparing the series with exact results for the circular cylinder, Thus,
Fig. 4bandthe p =1 curves of Fig. 4a determine the maximum ranges
of the series for the real and imaginary parts of the leading coefficients
( d_e'o excepted). (The series for ﬂ’e—a are more accurate than those con-

sidered, e.g., the k‘% series is valid for all o if ka < L1.)

The accuracy of (34) for calculating the angular factors Sn(CP)Sn(Cf;)M,;J'
follows by comparing them numerically with results based on the tabulated
Fourier coefficients, Thus, for A< 1.1 (i.e., for O<ka<1] and O<ps< 1)
it is found that the two results differ by less than 1 percent. These approxi-
mations are least accurate for the strip (p = 0) for which case A =/2/2,
for the circle (e= 1)} 4 =0 and (34) reduces to simple trigonometric

functions (independent of £ ).

Combining (34) with the closed forms for the scattering coefficients
leads to relatively accurate expressions for the leading terms of the series
(25). Of course, because of the angular dependence, the errors in the indi-
vidual terms can cancel or add up to give more or less accurate values for
the amplitudes. As an illustration of the overall accuracy of the final forms,
Fig. 5 compares closed form and exact results for the circular cylinder
for ﬂ parallel; thus, for example, the closed forms for I;«+)2are seen to

be accurate to within 3.5 percent for all angles of observation. Better

14
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overall agreement is obtained for smaller kéL) the circular cylinder
with 5 parallel, and for strips for both polarizations; e.g., for the case
of Fig. 5, the closed forms and exact values are practically identical

for fa<o0.5.

For special ranges of the parameters, the closed forms can be
replaced by elementary series approximations; e.g., (35)and (36). This
is illustrated in Figs. 6 and 7 which compare closed form and series re-
sults for cylinders. Thus, for example, Fig. 6 shows that for L‘/ paral-
lel, the &7 approximation (35) applies (more or less) for £2=<0.5 when
P<0.5.  Similarly, for ’@ parallel, Fig. 7 demonstrates that the £~
series (36) can be used for £u < 0.7 when FS 0.5  The full range of P
can be covered by suitably restricting 44 and/or the angles; e.g., the £~
series for £ parallel can be used for all @ if Ra < 0.7 and the direc-

tion of observation is not near the back direction (see Fig. 7b).

4. TABLES AND GRAPHS

The low frequency approximations described in the previous sec-
tions have been applied numerically in detail. Most of the calculations
were performed on a Burroughs 220 electronic computer and the results
are preserved in permanent tables. For cylinders and for protuberances,
for /g and ﬁ/ parallel, these tables include closed forms for the real and
imaginary parts of the scattering amplitudes, and for the corresponding

intensities, for the ranges

Olska<11, Alka) =0.Z,
(39) p=basro Ap
% =0,10]457 805 90;
O=P< 550°, AL = 107,
In addition, tables of forward and back scattered intensities and phases,
ﬁefj(cgf/;)) fe é@f, 7-4p ), and of JIm £,(4 m-4 ) have been compiled for
@$(7€é 90°(2.50\<A$pé10°> and the values of e and fa of (37); the
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values of p); the dashed curves are based on the k?

series (36).

For case (a) the series equals the closed form when ka < 0.3,
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smaller increments of ¥ were used for protuberances for near-grazing
incidence (with respect to the ground plane) to facilitate obtaining the

analogous results for elliptically striated surfaces9.

It is not possible to present the complete set of tables here, and
in the following we merely illustrate their contents through a series of
graphs. These are given in four sets corresponding to cylinders with g
perpendicular or parallel (Set I and Set II), and to protuberances with g
perpendicular or parallel (Set III and Set IV). The individual graphs are
labeled Graph I-1, Graph I-2, etc., where the integer always refers to
the same quantity. Thus, without regard to a specific set, the graphs are
described in general by the following:
Graph 1: k/4 times the total scattering cross section (i.e., the negative

of the real part of the scattering amplitude in the forward direc-

tion) versus the angle of incidence (cpo), for different values
of p = b/a and ka.

Graph 2: Forward scattered intensity versus the angle of incidence,
for different values of p and ka.

Graph 3: Forward scattered intensity versus the angle of incidence,
for different values of p and Py

Graph 4: Back scattered intensity versus the angle of incidence, for
different values of p and. ka.

Graph 5: Back scattered intensity and phase curves versus ka, for
different values of p and ®-

Graph 6 and higher:

Far-field scattering patterns versus the angle of observation
(), for different values of p , ka, and P

More detailed descriptions of the individual graphs (e.g., the
explicit values of the parameters considered) are listed at the beginning

of cach set.

The authors wish to thank Miss Mary Brockett who drew the graphs.
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SET I: Graphical Results for Elliptic Cylinders and H Parallel.

Graph I-1: ~Re g+(cpo, cpo) versus ¢ for ka = 0.5, 0.7, 0,9,

and 1.1, and different values of p.*

Graph I-2: |g+(cpo, cpo)l2 versus ¢_ for ka = 0.5, 0,7, 0,9,and 1.1

and different values of p.*

Graph I-3: l‘g+(q’o’ cpo) I 2 and the phase of g+((po, (po) versus ka<l.l,
for ¢ = 0°(a), 45°(b), and 90°%c), and different values of p.*

Graph I-4: |g+(1r+qoo, cpo)[2 versus o  for ka = 0.5, 0.7, 0.9, andl.1,and

different values of p.*

Graph I-5: ]g+(1r+cpo, cpo) |® and the phase of g+(7r+q;o, c,oo) versus kagl. 1,
for 9, = 0°(a,)‘, 45°(b), and 90°(c), and different values of p.*

Graph I-6: lg+(<p, cpo) l’ versus ¢ for ¢, = 0(a), 45°(b), and 90°(c),
ka = 0.3, and different values of p.*
Graph I-7: [g+(cp, cpo) [‘3 versus ¢ for ¢, = 0(a), 45°(b), and 90°(c),

ka = 0.5, and different values of p.*

Graph I-8: |g+(cp, cpo)la versus ¢ for P, = 0(a), 45°(b), and 90°(c),

ka = 0.7, and different values of p.*

Graph I-9: [g+(<p, qpo)]‘? versus ¢ for ¢, = 0(a), 45°(b), and 90°(c),

ka = 0.9, and different values of p.*

o

Graph I-10: lg+((p, cpo)la versus ¢ for 9, = 0(a), 45°(b), and 90 (c)
ka = 1.1, and different values of p.*

#The number next to a curve gives the value of p = b/a =

(minor axis/major axis).
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SET II: Graphical Results for Elliptic Cylinders and E Parallel.

~

Graph II-1: -Re g _(¢,, cpo) versus o for ka = 0.5, 0.7, 0.9,

and 1.1, and different values of p.*

Graph II-2: Ig_(cpo,cpo)la versus @ for ka = 0.5, 0.7, 0.9,and 1.1

and different values of p.*

Graph II-3: Ig-(q’o’ (‘00)12 and the phase of g_(py ¢ ) versus kasgl.l,

for v, = 0°(a), 450(b), and 90°(c), and different values of p. %

Graph II-4: lg_(m+,, 9,)|? versus ¢ for ka = 0.5, 0.7, 0.9,and 1.1

and different values of p,*

Graph II-5: |g_(Tr+cpo, q::0)|2 and the phase of g_(n+epo, cpo) versus ka<l.l,
for ¢, = 0°(a), 45°(b), and 90°(c), and different values of p. %

Graph II-6: lg_(cp, cpo) | ? versus ¢ for ®, = 0(a), 45°(b), and 90%(c),
ka = 0.3, and different values of p.*

Graph II-7: ]g_(q;, cpo)|2 versus ¢ for ¥, = 0(a), 45°(b), and 90°(c),
ka = 0.5, and different values of p,*

Graph II-8: ]g_(qp, 95) |? versus ¢ for ©, = 0(a), 45°(), and 90°(c),

ka = 0.7, and different values of p.*

Graph II-9: |g_(<p, <po)|’a versus ¢ for 9, = 0(a), 45°(b), and 90°(c),

ka = 0.9, and different values of p,*

Graph II-10 ]g_(cp, qpo)la versus ¢ for 9, = 0(a), 45°(b), and 90°(c),

ka = 1.1, and different values of p,*

*The number next to a curve gives the value of p = b/a =
(minor axis/major axis).
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Graph II-8(b): |g_(p, 45°) |2 .
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Graph II-10(a): |g_(p, 0)|?.

77

e S e =

R P .



DIRECTION OF
INCIDENCE o
45
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SET III: Graphical Results for Semi-Elliptic Protuberances and H Parallel.

Graph III-1:

Graph III-2:

Graph III-3:

Graph III-4:

Graph III-5:

-Re f+(cp°,1r-cp°) versus ¢, for ka = 0.5, 0.7, 0.9,

and 1.1, and different values of §,*

|f+(cpo, v-gpo)lz versus ¢, for ka = 0.5, 0.7, 0.9,

and 1.1, and different values of §. %

|f+(cp°, "'CPO)IB and the phase of f+(cpo‘, 'n’-:po) versus kagl. 1,
for o = 0°(a) and 45°(b), and different values of §&. %

If_l_(-cpo,n'-cpo)]a versus ¢, for ka = 0.5, 0.7, 0.9,

and 1.1, and different values of §. %

|f+(-cp0, 1r-<po)|2 and the phase of f+("\°o" -rr-;po) versus ka<l.1,

for ¢, = 45° and different values of . *

Graph III-6: |f+(cp,1r-(po)|2 versus ¢ for o = 0, 45°, and 80°,

ka = 0.3, and different values of §. %
Graph HI-7: |f+(cp,1r-cpo)|3 versus ¢ for ¢, = 0, 45°, and 80°,

ka = 0.7, and different values of §. %
Graph III-8:  |fi(qp, w-cpo)la versus ¢ for Py = 0, 45° and 90°,

ka = 1.1, and different values of §.*
*The number next to a curve gives the value of § = 7/g = )
(axis || ground plane)/(axis _L ground plane); 6 = 0 corresponds to
perpendicular strips, § = 1 to semi-circles, and § = oo to flat strips v
(see Fig. 3).
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Graph III-3(a)
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Graph III-5
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Graph III-7 (con't): ka = 0.7
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Graph III-8: ka = 1.1
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SET IV: Graphical Results for Semi-Elliptic Protuberances and F Parallel.

Graph IV-1: -Re f_((po,'n'-cpo) versus ¢ for ka = 0.5, 0.7, 0.9,

and 1.1, and different values of §.%

Graph IV-2: |.v‘i_(cpo,ﬂ'-<oo)|a versus ¢, for ka = 0.5, 0.7, 0.9,

and 1.1, and different values of §.

Graph IV-3: |f_((po, n-cpo) |2 and the phase of £ (o, m=py) versus kag<l.l,
for 9y = 0°(a) and 45'°(b), and different values of §, %

Graph IV-4: |f_(-cpo,1r-<po)|a versus o for ka = 0.5, 0.7, 0.9,

and 1.1, and different values of §. %

Graph IV-5: |f_‘(-(po, -n--cpo) | 2 and the phase of f_(-:po, w-cpo) versus kagl.l,

for 0, = 45° and different values of §. *

Graph IV-6: |f__(<‘p,11'-;p0)|‘2 versus ¢ for 9y = 0, 450, and 800,

ka = 0.3, and different values of §. %

Graph IV-T: |f_(¢p,n'—(po)‘|2 versus ¢ for 9, = 0, 450, and 800,

ka = 0.7, and different values of §. %

Graph IV-8: |f_(cp,rr—cpo)|2 versus ¢ for o, = 0, 45°, and 90°,

ka = 1.1, and different values of §. *
*The number next to a curve gives the value of § = 7/& =
(axis H ground plane)/(axis J_ ground plane); 6§ = 0 corresponds to
perpendicular strips, § = 1 to semi-circles, and § = o to flat strips

(see Fig. 3).
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Graph IV-1 (Con't): -Re f+((po, n-cpo).
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